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Abstract - In this paper, we propose an ANFIS-based
energy and reserve co-optimization model with
consideration of high penetration of renewable energy.
Under the assumption of a fixed uncertainty set of
renewable, a two-stage robust model is proposed for
clearing energy and reserves in the first stage and checking
the feasibility and robustness of re-dispatches in the second
stage. ANFIS functions are introduced into the optimization
model to represent the satisfaction degree of the variable
uncertainty sets. The lower bound of the uncertainty set is
expressed as membership functions. The solutions are
obtained by transforming the mathematical programming
formulation into traditional optimization problems. The new
method is applied to a case study of the IEEE 30 -bus power
system to verify the effectiveness of the proposed model and
algorithm. The generated solution provides unit
commitment as well as energy and reserve schedules. It is
demonstrated that the ANFIS model can provide a trade-off
solution between the system operating risks and total
scheduling cost.

Index Terms—Fuzzy Energy, Renewable Energy, ANFIS
function, tow stage robust model.

I. INTRODUCTION

Renewable energy is energy that is collected
from renewable resources, which are naturally
replenished on a human timescale, such
as sunlight, wind, rain, tides, waves, and geothermal
heat. Renewable energy often provides energy in four
important areas: electricity generation, air and water
heating/cooling, transportation, and rural (off-
grid) energy services.

Renewable energy is derived from natural processes
that are replenished constantly. In its various forms, it
derives directly from the sun, or from heat generated deep
within the earth. Included in the definition is electricity
and heat generated from solar, wind, ocean, hydropower,
biomass, geothermal resources, and biofuels and
hydrogen derived from renewable resources.

Renewable energy resources exist over wide
geographical areas, in contrast to other energy sources,
which are concentrated in a limited number of countries.
Rapid deployment of renewable energy and energy
efficiency is resulting in significant energy
security, climate change mitigation, and economic
benefits. The results of a recent review of the
literature concluded that as greenhouse gas (GHG)
emitters begin to be held liable for damages resulting
from GHG emissions resulting in climate change, a high

value for liability mitigation would provide powerful
incentives for deployment of renewable energy
technologies. In international public opinion
surveys there is strong support for promoting renewable
sources such as solar power and wind power. At the
national level, at least 30 nations around the world
already have renewable energy contributing more than 20
percent of energy supply. National renewable energy
markets are projected to continue to grow strongly in the
coming decade and beyond. Some places and at least two
countries, Iceland and Norway generate all their
electricity using renewable energy already, and many
other countries have the set a goal to reach 100%
renewable energy in the future.

Wind power, a renewable and virtually inexhaustible
power source, is a promising means of green energy
production.  Currently, wind power is not in wide use and
accounts for the production of only 1% of energy used
world-wide. The wind power industry has experienced
continued growth in the past year.

Wind power is basically converted solar power. As
the sun heats the earth, land masses and oceans, are
heated in varying degrees as they absorb and reflect heat
at different rates. This causes portions of the atmosphere
to warm differently and as hot air rises, atmospheric
pressure causes cooler air to replace it. The resulting
movement in the air is wind.

The kinetic energy of wind is converted by turbine
blades which drive a generator to produce electrical
energy. Wind power can be harnessed using wind
turbines grouped together on wind farms, located either
on land or offshore, for large-scale production. Wind
power generation varies in size from small generators
which produce sufficient electrical power for a small farm
to wind farms which can generate power for thousands of
households.

The intermittent nature of wind makes reliability and
storage of wind energy an important issue. Utilities must
maintain sufficient power to meet customer demand plus
an additional reserve margin. Although wind is variable
and at times does not blow at all, fluctuations in the
output from wind farms can be accommodated within
normal operating strategies, as the majority of wind is
added to power systems as an energy source rather than a
capacity source. A spinning reserve enables a plant to
meet demand. Amount of energy production is based on
how average wind speed at the site of the wind farm and
the correlation between output and demand. Capacity of
wind farms also depends on geographical dispersion-the
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farther apart wind plants are located, the greater the
chance that some of them will be producing power at any
given time.

The capacity of the transmission grid to deliver wind
energy to customers has been identified as one of the
biggest constraints on wind energy use in the U.S. Often
areas of high wind which are best suited as sites or wind
farms are not located near demand centers, causing the
power generated to be transmitted over long distances
resulting in loss of power. Costs are also increased with
the necessity of building transmission lines and
substations.

Environmental concern has been raised over avian
fatalities caused by collisions with wind turbines. Bird
deaths caused by wind turbines are low compared to
avian death caused by birds flying into buildings and
windows, but environmentalists urge that patterns of bird
flight and paths of migration should factor into site
selection for wind farms.

Wind power is the fastest growing power source
worldwide on a percentage basis and according to the
U.S. Department of Energy global winds could
theoretically supply more than 15 times current world
energy demand.

II. RELATED WORK

Qiu, Jianhui Wang, et al., [1] propose a
distributionally robust congestion management model
that selectively uses dynamic ratings on critical lines and
keeps the risk of thermal overloading below a prescribed
level. A case study illustrates that the proposed model can
effectively alleviate transmission congestion with a low
error rate.

Bian, and K. P. Wong, et al., [2] present
adistributionally robust optimization (DRO) model is
presented for the reserve schedule decision-making
problem with partial information of wind power, aiming
to find a robust solution to the uncertainty of wind power
probability distribution. The stochastic problem can be
converted into an equivalent deterministic bilinear matrix
inequality (BMI) problem.

Liu, and H. Chen et al., [3] presents a stochastic
robust framework for two-stage power system
optimization problems with uncertainty. The model
optimizes the probabilistic expectation of different worst-
case scenarios with different uncertainty sets.

Wang, et al., [4] develops a day-ahead two-stage
multi-objective unit commitment model which optimizes
both the supply reliability and the total cost with
environmental concerns of thermal generation systems.
To tackle the manifold uncertainties of unit commitment
in a more comprehensive and realistic manner, stochastic
and fuzzy set theories are utilized simultaneously, and a
unified reliability measurement is then introduced to
evaluate the system reliability under the uncertainties of
both sudden unit outage and unforeseen load fluctuation.

Shahidehpour et al., [5] compares applications of
scenario-based and interval optimization approaches to
stochastic security-constrained unit commitment
(Stochastic SCUC). The uncertainty of wind power
generation is considered in this study to compare the two
approaches, while other types of uncertainty can be
addressed similarly. For the simulation of uncertainty, the
scenario-based approach considers the Monte Carlo (MC)
method, while lower and upper bounds are adopted in the
interval optimization. The Stochastic SCUC problem is
formulated as a mixed-integer linear programming (MIP)
problem and solved using the two approaches. The
scenario-based solutions are insensitive to the number of
scenarios, but present additional computation burdens.

III. SYSTEM IMPLEMENTATION

Renewable energy resources have been rapidly
integrated into power systems in many parts of the world,
contributing to a cleaner and more sustainable supply of
electricity. Wind and solar resources also introduce new
challenges for system operations and planning in terms of
economics and reliability due to their variability and
uncertainty. At the heart of the challenge is to efficiently
address the uncertainty and variability of the renewable
resources in operational decisions that focus on unit
commitment (UC) and economic dispatch (ED) methods
from day-ahead scheduling to real-time operations.

In the past decades, a number of optimization
techniques have been applied to deal with renewable
uncertainties in power systems, such as stochastic
mathematical programming, robust programming,
distributionally robust programming and interval linear
programming. Flexible fuzzy mathematical programming
is an effective method in dealing with softness and
uncertainty expressed as fuzzy membership functions. It
permits an adequate solution of problems in the presence
of vague information about uncertain factors, such as
resource availability of renewable energy.

Fuzzy theory has been used for dealing with power
system operation problems for more than two decades. In,
a fuzzy model for power system operation is presented,
where uncertainties in load and generation are modeled as
fuzzy numbers. System behavior under inexact (while
uncertain) injections is dealt with by a DC fuzzy power
flow model. In, an optimal power flow (OPF) formulation
that can handle fuzzy constraints is presented. The
proposed method converts the fuzzy OPF problem into a
crisp optimization problem and solves this problem by
using an iterative linear programming technique.
Reference presents a mathematical formulation for the
optimal reactive power control problem using the fuzzy
set theory. The objective function and the constraints are
modeled by fuzzy sets. Paper presents a new multi
objective Tabu search algorithm to solve a multi objective
fuzzy model for optimal planning of distribution systems.
In, an approach to the fuzzy UC problem using the
absolutely stochastic simulated annealing method is
proposed. Paper presents a new fuzzy-optimization-based
approach to solving the thermal UC problem. In this
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approach, load demand, reserve requirements, and
scheduling cost are expressed by fuzzy set notations,
while unit generation limits, ramp rate limits, and
minimum up and/or down limits are handled as crisp
constraints.

Project presents a UC formulation considering both
renewable integration and emissions requirements. The
reliability and emission constraints are modeled as fuzzy
constraints. The model is solved by using simulated
annealing. Reference presents two approaches for
addressing wind power forecast uncertainty in the day-
ahead UC. The first approach uses a fuzzy objective
function that considers expected energy not served and
total operating costs, whereas the second approach
increases operating reserves in a deterministic UC.
Reference presents a UC model considering demand
response of electric vehicles as well as wind power. To
deal with the UC problem, the authors use a fuzzy
chance-constrained program that takes into account the
wind power forecasting errors.  Proposes a one stage UC
solution to minimize cost as well as risk. Integration of
wind power introduces uncertainty in the solution that
may be quantified through an imbalance risk function.
The total cost and risk are modeled by using fuzzy sets.
Reference uses probability theory to model the unit
outage rate and applies fuzzy set theory to describe the
load uncertainty, then the UC problem in this study is
established as an optimization problem under stochastic
and fuzzy uncertainties. A multi-objective optimization
considering minimum cost as well as reliability
measurement is proposed to obtain the power system
schedule.

IV. PROPOSED SYSTEM

Traditionally, the spinning and non-spinning reserve
requirement is based on a probabilistic or deterministic
representation of contingencies. However, in the
environment of high penetration of renewables, the
scheduled energy and operating reserves should also be
dependent on the uncertainty in renewables. In two-stage
security-constrained UC or economic dispatch problems,
considering a larger uncertainty set of renewables in
general leads to a smaller operating risk, e.g. measured in
terms of the likelihood of lost load or reserve shortages. If
there is potential generation shortage caused by
overestimation of renewables, the system operator has to
buy an additional amount of reserve in advance, to cover
a potential supply-demand gap. Furthermore, it is difficult
to describe tail events accurately and to determine the
exact boundary of the considered uncertainty set in
probabilistic terms. Therefore, fuzzy theory is an ideal
alternative concept to model the likeness of the soft
boundaries of uncertainty sets.

In this project, we propose a fuzzy based energy and
reserve co-optimization scheduling model. The main
contributions of the paper include:

1) We combine fuzzy theory and two-stage robust
interval optimization and propose a joint energy and
reserve scheduling model that considers robust re-

dispatches with renewable uncertainties as well as the soft
boundaries of uncertainty sets.

2) The lower bound of the uncertainty set is expressed
as fuzzy membership functions. The proposed model
provides adequate scheduling solution in the occurrence
of incomplete or vague information about uncertain
factors.

3) The optimization model calculates efficient
schedules by considering the trade-off between the
system operating risk and economic scheduling cost.

1. RESERVE CO-OPTIMIZATION WITH HIGH
PENETRATION:

(i) Two-stage mathematical programming model

A two-stage co-optimization model is proposed to
address the uncertainty in wind power output. The
structures and philosophy in the two stages are different
respectively. The first-stage problem corresponds directly
to current decision-making, before future uncertainties
are disclosed. Once the decisions in the first stage are
made, they cannot be changed in the second stage. The
second-stage problem considers the recourse cost and
examines the viability of the decisions made in the first
stage using scenarios.

In two stage Energy and Reserve co-optimization
problem, the first stage of the problem corresponds
directly to day-ahead energy and reserve clearing and unit
commitment which will be kept in real time (second
stage). The second-stage problem considers the real-time
generation re-dispatch and correction which is based on
the actual wind power output and the unit commitment,
energy and reserve solution from the first stage. Hence, in
our model, the decision variables in the first stage are the
commitment status, cleared reserve of all thermal
generating units considering the decision variables
including generation correction, re-dispatch and wind
power output in the second stage.

The multi-period security-constrained Interval UC and
energy and reserve co-dispatch can be formulated as (1).
The objective function is to minimize the sum of the UC
cost, energy cost, reserve cost and unserved energy and
reserve cost for the expected wind power level. It
represent UC constraints, power balance constraints, wind
constraints, reserve requirement constraints, relationship
of scheduled power, reserve and maximum and/or
minimum capacity, relationship of reserve and ramp rate,
ramping constraints, and transmission limits constraints,
respectively. The constraint on minimal spinning reserve
requirement for the system is related to the dispatch
levels of all thermal generating units (N-1 criterion). The
spinning reserve is also implicitly determined by
transition distance limits between the base case scenario
and all other possible scenarios. The operating reserve
requirement in Constraint can be determined by the
highest generator capacity and a percentage of the total
load. In this paper, we assume that all reserves are
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provided by thermal units, and that wind and demand
does not provide reserves. The renewable uncertainty set
is modeled as an interval [ ,,,] in constraint . Constraints
represent the transition distance limits between the base
case wind power scenario and all other possible
scenarios. In each possible scenario, corrective actions
are considered based on ,− , ≤ , for mitigating the
deviations in renewable energy. The physically
acceptable adjustments of non-wind generating units will
be less than cleared spinning reserves to accommodate
the volatility of wind. Corrective actions refer to the
redispatch of non-wind units while satisfying power flow
imbalances and transmission network violations in real
time. It denotes system load balance of each scenario.
Constraint represents transmission constraints for all
possible scenarios within the wind power interval.
Renewable power can be dispatched down to below its
maximal available energy.∑ ∑ . , + . , + . , +, . , + , . , + , . , ) +∑ ( . + . + . )
____ (1)

(ii) Adaptive Neuro Fuzzy Inference System

An adaptive Neuro-fuzzy inference system or
adaptive network-based fuzzy inference system (ANFIS)
is a kind of artificial neural network that is based on
Takagi–Sugeno fuzzy inference system. The technique
was developed in the early 1990s. Since it integrates both
neural networks and fuzzy logic principles, it has
potential to capture the benefits of both in a single
framework. Its inference system corresponds to a set of
fuzzy IF–THEN rules that have learning capability to
approximate nonlinear functions. Hence, ANFIS is
considered to be a universal estimator. For using the
ANFIS in a more efficient and optimal way, one can use
the best parameters obtained by genetic algorithm

The adaptive network-based fuzzy inference systems
(ANFIS) is used to solve problems related to parameter
identification. This parameter identification is done
through a hybrid learning rule combining the back-
propagation gradient descent and a least-squares method.

ANFIS is basically a graphical network
representation of Sugeno-type fuzzy systems endowed
with the neural learning capabilities. The network is
comprised of nodes with specific functions collected in
layers. ANFIS is able to construct a network realization
of IF / THEN rules.

Consider a Sugeno type of fuzzy system having the
rule base

1. If x is A1and y is B1, then f1= c11x+c12y+c10

2. If x is A2and y is B2, then f2= c21x+c22y+c20

Let the membership functions of fuzzy sets Ai, Bi,
i=1,2, be , AiBi.

In evaluating the rules, choose product for T-norm
(logical and).

1. Evaluating the rule premises results in

2. Evaluating the implication and the rule
consequences gives

Or leaving the arguments out

This can be separated to phases by first defining

Then f can be written as

All computations can be presented in a diagram form.
ANFIS normally has 5 layers of neurons of which
neurons in the same layer are of the same function family.

Figure 1: Structure of the ANFIS network.

Figure 2: ANFIS Architecture

Layer 1 (L1): Each node generates the membership
grades of a linguistic label.

An example of a membership function is the
generalised bell function:
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Where {a, b, c} is the parameter set. As the values of
the parameters change, the shape of the bell-shaped
function varies. Parameters in that layer are called
premise parameters.

Layer 2 (L2): Each node calculates the firing strength
of each rule using the min or prod operator. In general,
any other fuzzy AND operation can be used.

Layer 3 (L3): The nodes calculate the ratios of the
rule’s firing strength to the sum of all the rules firing
strength. The result is a normalized firing strength.

Layer 4 (L4): The nodes compute a parameter
function on the layer 3 output. Parameters in this layer are
called consequent parameters.

Layer 5 (L5): Normally a single node that aggregates
the overall output as the summation of all incoming
signals

(iii) The ANFIS learning algorithm

When the premise parameters are fixed, the overall
output is a linear combination of the consequent
parameters. In symbols, the output f can be written as

       1 11 1 12 1 10 2 21 2 22 2 20f wx c wy c wc wx c wy c wc     

Which is linear in the consequent parameters cij (i =
1,2¸ j = 0,1,2). A hybrid algorithm adjusts the consequent
parameters cij in a forward pass and the premise
parameters {ai, bi, ci} in a backward pass (Jang et al.,
1997). In the forward pass the network inputs propagate
forward until layer 4, where the consequent parameters
are identified by the least-squares method. In the
backward pass, the error signals propagate backwards and
the premise parameters are updated by gradient descent.

Because the update rules for the premise and
consequent parameters are decoupled in the hybrid
learning rule, a computational speedup may be possible
by using variants of the gradient method or other
optimisation techniques on the premise parameters.

VI. RESULTS AND ANALYSIS

It ensures the image processing steps used are
completely documented, and hence can be replicated.

In general, the source code for all image processing
functions are accessible for scrutiny and test.

It allows one to ensure numerical precision is
maintained all the way through the enhancement process.

Image processing algorithms available under
MATLAB are likely to be more advanced than those
available from other image processing applications.

Fig 4.1 Comparison for Power Wind1&Wind2

Fig 4.2 ANFIS output

V. CONCLUSION

The two-stage energy and reserve co-optimization
model based on interval programming can provide a
solution which is robust under a fixed uncertainty set.
When considering a larger interval uncertainty set, the
system operating risk is low, but the total scheduling cost
is high. When considering a smaller interval uncertainty
set, the contrary conclusion is obtained. The proposed
ANFIS -based energy and reserve co-optimization model
considers the softness of the uncertainty set of renewable
resources. By transforming the ANFIS mathematical
programming model into a mixed integer linear
programming model, the model obtains UC, cleared
energy, reserve, and renewable shedding for each time
period. The solution demonstrates that the ANFIS model
can provide a trade-off solution between the system
operating risks and total scheduling cost. The future work
may be extended in the way of implementing with the
Energy and Reserve Co-optimization with High
Penetration of Renewable Energy along with the fruit fly
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optimization techniques. This behavior is useful to find
out which features to be given for the training process
with maximum accuracy.
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