Journal — ICON (Integrating Concepts) |SSN 2456-6071

Vol. 3, Issue 1, January 2018

WDO Based Security Constrained Unit Commitment with
Flexible Set for Variable Wind Power

M.Sumathy, A.Gnana Saravanan, S.Murugan and A.Amala Manuela

Abstract-Power system operation has witnessed great
challenges due to the large-scale integration of wind power.
In this project, a two-stage robust security constrained unit
commitment (SCUC) model is proposed for managing the
wind power uncertainty in the hourly power system
scheduling. Different from most existing works on robust
SCUC, the flexible uncertainty set for wind power is taken
into account, rather than the predefined deter ministic one.
The proposed method does not only pay attention to the
feasible and economic operations within the flexible sets but
also consider the risk in wind spillage or load curtailment
out of them. It makes a better trade-off between wind power
absorption and the economic grid operation, as well as
obtaining feasible dispatch schedules. The proposed model
and the corresponding solution method have been verified
by several case studies in the modified |EEE systems. The
results demonstrate the merits of the proposed solution
method for managing large variations in the available wind
power and lowering the overall cost of power system
operations in an uncertain environment. The influence
factors are also discussed such as the flexible resource and
transmission capacity.

Index Terms—Fuzzy Energy, Renewable Energy, ANFIS
function, tow stage robust model.

[. INTRODUCTION

Wind power, a renewable and virtually inexhaustible
power source, is a promising means of green energy
production. Currently, wind power is not in wide use and
accounts for the production of only 1% of energy used
world-wide. The wind power industry has experienced
continued growth in the past year. Wind power is
basically converted solar power. As the sun heats the
earth, land masses and oceans, are heated in varying
degrees as they absorb and reflect heat at different rates.
This causes portions of the atmosphere to warm
differently and as hot air rises, atmospheric pressure
causes cooler air to replace it. The resulting movement in
the air is wind. The kinetic energy of wind is converted
by turbine bladeswhich drive a generator to produce
electrical energy. Wind power can be harnessed using
wind turbines grouped together on wind farms, located
either on land or offshore, for large-scale production.
Wind power generation varies in size from small
generators which produce sufficient electrical power for a
small farm to wind farms which can generate power for
thousands of households.

The combination of the (aready, many) traditional
forms of UC problems with the several (old and) new
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forms of uncertainty gives rise to the even larger family
of Uncertain Unit Commitment (UUC) problems, which
are currently at the frontier of applied and methodological
research.

Unit commitment (UC) is an optimization problem
used to determine the operation schedule of the
generating units at every hour interval with varying loads
under different constraints and environments. Many
algorithms have been invented in the past five decades for
optimization of the UC problem, but still researchers are
working in this field to find new hybrid algorithms to
make the problem more realistic. The importance of UC
is increasing with the constantly varying demands.
Therefore, there is an urgent need in the power sector to
keep track of the latest methodologies to further optimize
the working criterions of the generating units. This paper
focuses on providing a clear review of the latest
techniques employed in optimizing UC problems for both
stochastic and deterministic loads, which has been
acquired from many peer reviewed published papers. It
has been divided into many sections which include
various constraints based on profit, security, emission and
time.

Some additional efforts are made in earlier works on
devising variable uncertainty sets. The work in considers
a series of uncertainty sets and decision-makers choose
one of the uncertainty sets for determining the power
system operation plan. Such variable sets are not
sufficiently flexible for the set candidates are rather
limited and discrete. The same problem also exists for the
multi-band uncertainty set adopted in, where the original
sets are divided into several sub-parts indexed by discrete
variables.

Il. RELATED WORK

In M. Lubin, and S. Backhaus et al.,[1] proposed an
Optimal Power Flow (OPF) dispatches controllable
generation a minimum cost subject to operationa
congtraints on generation and transmission assets. The
uncertainty and variability of intermittent renewable
generation was challenging current deterministic OPF
approaches. The RCC OPF was solved using a cutting-
plane algorithm that scales to large power systems.
Deterministic, chance constrained (CC), and RCC OPF
formulations were compared using several metrics
including cost of generation, area control error, ramping
of controllable generators, and occurrence of transmission
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line overloads as well as the respective computational
performance.

Wang, F. et al., [2] presenteda risk-based admissibility
assessment approach was proposed to quantitatively
evaluate how much wind generation can be
accommodated by the bulk power system under a given
unit commitment (UC) strategy. First, the operational risk
brought by the variation and uncertainty of wind
generation was developed as an admissibility measure of
wind generation. Then its linear approximation is derived
for practica implementation. Furthermore, a risk-
minimization model is established to mathematically
characterize the admissible region of wind generation.

Zhang, et a., [3]develop a unified framework for
studying constrained robust optimal control problems
with adjustable uncertainty sets. In contrast to standard
constrained robust optimal control problems with known
uncertainty sets, the authors treat the uncertainty sets in
our problems as additional decision variables. In
particular, given a finite prediction horizon and a metric
for adjusting the uncertainty sets, we address the question
of determining the optimal size and shape of the
uncertainty sets, while simultaneously ensuring the
existence of a control policy that will keep the system
within its congtraints for al possible disturbance
realizations inside the adjusted uncertainty set.

Huand L. Wu, et al., [4] discusses a multi-band robust
security- constrained unit commitment (SCUC) model for
addressing spatial/temporal relationship of nodal load
uncertainties. Case studies show that the proposed multi-
band model derives less conservative robust solutions
while maintaining the same solution robustness as
compared to the single-band model in literature.

Y.An and B. Zeng et al., [5] to explore and extend the
modeling capacity of two-stage robust optimization and
present two new robust unit commitment variants. the
expanded robust unit commitment and the risk
constrained robust unit commitment model.

I11. SYSTEM IMPLEMENTATION

Based on above robust optimization theories, this
project establishes a Robust Optimization with Security-
Constrained Unit Commitment (SCUC) model for
variable wind power based on Wind Driven Optimization
Algorithm (WDOQ) that is coordinating reliability and
economy. The concept of uncertainty budget is
introduced for making up for the deficiency of
conventional robust optimization of conservation. The
uncertain domain can be enlarged or condensed by
adjusting uncertainty set so as to control robust
optimization solution flexibly.Firgt, it is an extension the
conventional robust SCUC (not the distributionally robust
one) and highly compatible with the origina one. It has
taken into account the flexible uncertainty sets and
corresponding risks. But if the grid is with abundantly
cheap flexible resource, the solution of the proposed
model will naturally be that of the original one. Secondly,
the risks of wind spillage/load curtailment are evaluated
by the corresponding energy cost rather than normalized
in terms of the membership functions in fuzzy
optimization. It would be convenient to balance them
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with the generation cost and adjust the balance by
properly modifying the penalty price.

Moreover, this work derives an uncertainty decision
making method based on the built optimization dispatch
model to avoid blindness of uncertainty decision. Because
the established WDO optimization dispatch model
includes variables with high dimensions and is nonlinear
while has the characteristic of uncertainty, it is difficult to
solve and demands more in optimization algorithm.
Classical optimization agorithms, eg., Particle Swam
Optimization, Genetic Algorithm, and comprehensive
learning particle swarm optimization (CLPSO). It has
been found to be an effective technique in improving the
performance of some established algorithms such as
Invasive Weed Optimization (IWO), with simple
procedures and explicit results, are not suited for the
above mentioned highly complex robust optimization
dispatch problem anymore because their derivations are
based on local information and their results would
inevitably converge to local extreme value.
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Figure 3.1: Block Diagram of the Proposed System

In the first block the bus system data are collected. In
the second block operating constraints are assigned. In
here the operating constraints are Fuel start-up costs, Fuel
shut-down costs, Minimum on/off time, Generation
capacity constraints, Ramping capacity constraints, Power
balance congtraints, Transmission capacity. From the
operating constraints set the initial parameter for
evolutionary algorithm. Here the initial parameters are
Max no of iterations, Population size, Gravitational
constant, Coriolis constant, Maximum allowed speed and
RT constant. Then run the WDO. The cost comparison of
flexible and predefined sets are obtained in this block. At
the final block display the various cost and the SCUC is
obtained by various safety factors.

1. OBJECTIVE FUNCTION

The objective function minimizing the base-case
operation cost is considered here, to provide an economic
base-case operation plan, as shown in (3.1). It consists of
the fuel, start-up and shut-down costs. The fuel cost
function is usually in the linear form or can be linearized
for computation purpose.
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(i) FIRST-STAGE CONSTRAINTS

The following constraints are placed onto the base-
case operation, including the minimum on/off time (3.2)-
(3.5), the generation capacity (3.6), the ramping capacity
(3.7)-(3.8), the power balance (3.9) and the transmission
capacity (3.10). The wind power is usually assumed to be
their expectations at the first stage.
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(il) SECOND-STAGE CONSTRAINTS

At the second stage, the wind power uncertainty is
considered at the second stage. The operation plan should
be secure for any wind power redization in the
predefined uncertainty set wwhich is interpreted as
follows. A feasible responsive re-dispatch plan {pgi,t}
can be found for any given wind power in w.
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In addition, thethermal generation re-dispatch is
restricted by the corrective dispatch in the neighbourhood
of the base case, as shown in (3.14), where ta stands for
the allowed adjustment time duration.

-D Rgi ugi ,'(taS pgi A pgi ,ts u Rgi ugi ,tta """"" (3- 14)

(iii) MODEL FORMULATION

To take the flexible uncertainty set into account, it is
necessary to make some modifications on the
conventional robust model. In that way, the objective
function in (3.1) can be minimized as possible while the
robustness of the solution is lost. In essence, the variation
of wind power is not included in the model.

If the actual power of wind farm wi is larger
thane , ; +dw*, ;, an easy and direct way to
recovering a feasibleoperation is to spill the excessive
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wind power. Thus there will be wind spillage and the cost
expectation can be calculated by

Fie O, — e, = ) pf O, v,

* (3.15)

Here the curtailed wind power can be over-estimated,
because the spillage can be avoided by proper re-dispatch
if the wind power at other nodes is not in extreme
scenarios. But this estimation is very easy and practical.
The complex grid constraints are excluded as well as the
complicated coordination among different power
resources. Moreover, in the operation practice, the
dispatch signals for individual wind farms should also be
separate to which they can response quickly so that the
real-time security can be guaranteed.

Correspondingly, if the wind actual power is low, the
expectation of the load curtailment cost is
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Assuming the probability distribution of forecasted
wind power, we can obtain the above costs as a
measurement of the risks. Here they are added to the
objective function and a modified one in (3.17) can be
obtained. They can also be taken as constraints added to
the model. The base-case operation cost minimization
tends to shrink the flexible set while the consideration of
the risk requires a solution working for larger sets. A
balance can be obtained between them by considering the
certain penalty coefficients c,,and c;.
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2. WIND DRIVEN OPTIMIZATION

The Wind Driven Optimization (WDO) algorithm is a
new type of nature-inspired global optimization
methodology based on atmospheric motion. The Wind
Driven Optimization (WDO) technique is a population
based iterative heuristic global optimization algorithm for
multi-dimensional and multi-modal problems with the
ability to implement constraints on the search domain. At
its core, a population of infinitesimally small air parcels
navigates over an N-dimensional search space assigned
random velocities such that the positions of air parcels are
updated at each iteration based on the physical equations
that govern large-scale atmospheric motion following
Newton's second law of motion, which is also used to
describe the motion of air parcels within the earth's
atmosphere. Compared to similar particle based
algorithms, WDO employs additional terms in the
velocity update equation (e.g. gravitation and Coriolis
forces), providing robustness and extra degrees of
freedom to fine tune the optimization.

() THEORETICAL BACKGROUND

In the atmosphere, wind blows in an attempt to
equalize imbalances in air pressure. More specificaly, it
blows in the direction from a region of high pressure to
low pressure at a velocity which is proportiona to the
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pressure gradient. Assuming the air is in hydrostatic
balance and considering that the horizontal motion is
stronger than the vertical motion, the pressure variation,
and hence the wind can be treated as a horizontal
movement. Albeit, we live in a three-dimensional world,
our abstraction of wind motion addresses multi-
dimensional problems. Moreover, certain assumptions
and simplifications will be made in the derivation of the
operators used in the WDO algorithm. The starting point
in the development of WDO is with Newton’s second law
of motion, which is known to provide very accurate
results when applied o the anaysis of atmospheric
motion:

pa=y F (3.18)

Where a is the acceleration vector, p is the air density
for an infinitesma element of volume, and F; are the
forces acting on the mass. The equation that relates air
pressure to its density and temperature is given by the
ideal gaslaw:

where P isthe pressure, R isthe universal gas constant
and T is the temperature.In (3.18), there are four major
forces that either cause the wind to move in a certain
direction ordeflect it from its path. The most observable
force causing the air to move is the pressuregradient force
(FPG), while the friction force (FF) simply acts to oppose
such motion. The exactdescription of the friction force is
very complex and hence we use a simplified form
asdescribed in (3.23). Even though the gravitational force
(FG) acts as a vertical force in our physicalthree-
dimensional atmosphere, when it is mapped to N-
dimensional space, it becomes anattractive force that
pulls towards the origin of the coordinate system. For this
reason, thegravitational force isincluded in our algorithm.
The coriolis force (FC) is caused by the rotationof the
earth, and deflects the path of the wind from one
dimension to another. In WDO, it issimplemented as a
motion in one dimension that affects the velocity in
another.

The physical equations that govern each of these
forces are given below, where &V represents
aninfinitessimal air volume. VP is the pressure gradient, Q
represents the rotation of the earth, g isthe gravitational
acceleration, and u is the velocity vector of the wind.

B VPV emmermees (3.20)F=pOVE - (3.21)
[ o [T J— (322
Fmpl e (3.23)

All of these forces can be summed together and
plugged in the right-hand side of the Newton’ssecond law
of motion as given in (3.18). The resulting equation is
shown below:

i At =(p 8V g)+(=VP &) +{=pait)+ (=202 x1)
S ol o Y (324)

If we consider an infinitessimal air parcel that is
moving with the wind, we can derive a velocityupdate
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equation by simplifying (3.24). Using the ideal gas law
equation from (3.19), we can write pin terms of the
pressure and we can assume a unity time step, At = 1, for
simplicity. Afterrearranging the terms in (3.24), we can
derive the following velocity update equation:

=C llyy
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od 1T 8 P e ™ Xl

---------- (3.25)
In (3.25), the updated velocity for the next iteration,
unew, depends on the current iteration velocity(uyg), the
current location of the air parcel in the search space (Xqg),
the distance from thehighest pressure point that has been
found (Xm), the maximum pressure (P), the pressure
atthe current location (Pg), the temperature (T), the
gravitational acceleration (g), and theconstants R, o, and
c. The pressure term in the WDO is analogous to the
fitness of achromosome in GA terminology. If WDO is
compared against PSO, similar velocity updateequations
can be observed.

Yet, WDO depends on a population of infinitesimally
small airparcels distributed randomly over the search
space iteratively moving towards the highestpressure
point, where this motion is driven by the physical
equations that govern wind motion inthe atmosphere. The
position of the air parcel can be updated by (4.9) after the
velocity of the parcel is updated by (3.25):

Xpew = Xt + (2 e X AE)

The first term on the right-hand side of equation
(3.25) tells us that the air parcel would continue to travel
on its previous path with some opposition generated by
the friction. The second term is an attractive force that
pulls towards the center of the coordinate system. The
third term contributes a force towards the location of
maximum pressure which, in the algorithm, is assumed to
be the global best location for the optimization problem.
The last term emulates the coriolis force, which in reality
is a deflecting force. Here it is implemented such that
movement in one dimension is affected by the movement
in another dimension. Similar to PSO, velocity limitation
and boundary checks are also implemented in WDO. The
following figure represents the flow chart for the WDO.

(i) ADVANTAGESOF WDO

1) Compared with other particle optimization velocity
updation is possible in the WDO.

2) Provides robustness and extra degree of freedom to
fine tune the optimization.

3) The convergence speed is high.

4) Precision of Wind Driven optimization are higher.

Figure 4.1 shows the flowchart of the wind driven
optimization algorithm which has the main advantage of
the low time consumption. The main and the first step of
this process were initiadizing all the necessary values.
Then evauate the pressure for each air parcd. If it was
satisfied then update al the initialized values. This

10
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process repeated again and again until the optimized
values were obtained.
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Figure: 3.2: Flowchart of the Wind Driven
Optimization

IV. RESULTS AND DISCUSSION

The following figure represents the generated power
from wind in Predefined set and Flexible set. And the
power generation is scaled for 24 hour time horizon in
this work.

The proposed system implements an effective
optimization approach for the SCUC. For this, the work
wind driven optimization algorithm and its parameters are
shown in the following table.

Table4.1: WDO Parameters
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Figure 4.1: Wind power profile with uncertainty

The above figure shows the simulation result of the
wind power profile with uncertainty in a day. In here the
generated wind power in a day which based on the
flexible and predefined deterministic set and the flexible
set is considered as a 18% flexible.

Table4.2: FLEXIBLE WIND POWER
GENERATION
TIME FLEXIBLE PREDEFINED
WIND POWER WIND POWER
GENERATION GENERATION
(MW) (MW)
2:00 60 10
4:00 70 20
6:00 68 20
8:00 95 20
10:00 118 22
12:00 90 25
14:00 75 15
16:00 55 10
18:00 80 20
20:00 76 18
22:00 42 14
24:00 98 22

Parameters Number of item
Max no of iterations 100
Constant, RT 5
Gravitational constant, 0.2
Friction goefficient, a 04
Coriolis constant, ¢ 04
Population size 30
No of variable 4
Needed solution Globa minimum
Maximum allowed 0.1
speed
Minimum allowed -1
speed
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Figure 4.2 Cost value for safety factor 0.8

The above figure shows the simulation result for 0.8
safety factor. From the figure it shows the wind spillage
cost, load curtailment cost, generation cost and the fuel
cost which are all based on 0.80 safety factor. Here the
each cost is represented by different color.
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Figure 4.3 Cost value for safety factor 0.75

The figure 4.3 shows the simulation result for 0.75
safety factor. From the figure it shows the various cost
like wind spillage cost, load curtailment cost, generation
cost and the fuel cost which are all based on 0.75 safety
factor.

The above figure shows the simulation result for 0.70
safety factor. From the figure the various cost like wind
spillage cost, load curtailment cost, generation cost and
the fuel cost are obtained and which are all based on 0.70
safety factor. There is some wind spillage at certain hours
for the upper boundary of the flexible set is lower than the
predefined power range.

The above figure 4.5 shows the simulation result for
0.65 safety factor. From the figure the various cost like
wind spillage cost, load curtailment cost, generation cost
and the fuel cost are obtained and which are al based on
0.65 safety factor. A more operation plan and a smaller
cost can be obtained with the allowable wind spillage and
load curtail ment.
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Figure 4.5 Cost value for safety factor 0.65
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The above figure shows the simulation result for 0.60
safety factor. From the figure the various cost like wind
spillage cost, load curtailment cost, generation cost and
the fuel cost are obtained and which are all based on 0.60
safety factor. With small wind power variations, lower
operation cost can be obtained by baancing the
economics and risks. The safety factor when reduced to
0.60, there will be no feasible solutions due to safety
factor deficiency.
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Figure 4.7 Cost values based on various safety factors

The above figure shows the simulation result of
comparison of cost values based on various safety factors.
Here the safety factor is decreased from 0.80 to 0.60 at a
step of 0.05. However, as shown, with the decrease of
safety factor, the size of the flexible sets can increase,
decrease or even not change. It is because that the base-
casegeneration scheme is aso adjusted, on which the
change of the flexible sets greatly depend. When reduced
to 0.60, there will beno feasible solutions due to
transmission capacity deficiency.The load allocation
among conventionalgenerators is greatly influenced due
to the decrease oftransmission resource. The change of
flexible sets with respect to the safety factor depends on
the wind farmlocations, the power flow directions and the
power flow level. Other flexible resources such as
batteries, hydro generation and pumped storage can be
invested and expanded to manage the wind power
uncertainty and promote its penetration.

The above figure shows the simulation result of cost
comparison of the total generation of the flexible set
system with the predefined deterministic sets. As shown
the generation cost of the existing method is larger than
those with flexible uncertainty set although a feasible
solution is obtained.The average generation cost is about
$.25/ MWh.
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Figure 4.9: Fuel cost of flexible system

The above figure shows the simulation result of the
fuel cost comparison of the flexible system with
predefined deterministic system.The fuel cost is about
$117/kWh.
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Figure 4.10: Load curtailment cost of flexible system

The above figure shows the simulation result of the
cost comparison of load curtailment. The wind spillage
and load curtailment will increases with power variations.
The penalties on load curtailment is $3/KWh.
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Table 4.3:Various Costs of Flexible Wind Power

Generation

Various costs CostinRs: Costin$

Generation cost 16260554.05 250162.37

wind spillage 278758.64 4288.59
cost

load curtailment 220779.98 3396.62
cost

Fuel cost 7618427.16 117206.57

V. CONCLUSION

This paper has proposed a robust SCUC model to
manage the wind power variations. With the increasing
penetration of wind power into the power grid,
maintaining system reliability has been a challenging
issue, due to the intermittent nature of wind power. The
flexible uncertainty set is considered in place of the
predefined set, which is different from the existing
adaptive robust methods. Thus the feasible operation plan
with significant wind variations can be guaranteed. The
feasible operation plan can till be obtained even if there
is no solution for the existing robust method and the
overall cost is reduced further. The proposed method
offers the dispatch signals for conventional generators,
wind farms and with great potential in operation practice.
Numerical results show that the efficiency of the
proposed solution approach and the impact of outages of
system components and demand uncertainties on system
operating costs and allocations of energy allocation, fuel
consumption, and emission allowance and long-term
utilization of generating units.. The merits of proposed
temporal model are featured by the simulation of
uncertainties in the solution of stochastic long-term
SCUC. The proposed work is handled with the high
efficient wind driven optimization algorithm for solving
the robust SCUC problems and provides the reduced cost
of Wind spillage, Load Curtailment and Generation cost.

V1. FUTURE IMPLEMENTATION

The future work is planned to implement the same
fashion of work with other optimization techniques and
comparison of the results. It is chosen to implement
multi objective optimization technique for the future
work. With the help of this approach, various parameters
like load curtailment, wind spillage can be simultaneously
optimized.
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