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Abstract: Change detection of remote sensing images
quantitatively analyzes image information at different
times in the same area, so as to obtain the change
information of the coverage area . Synthetic aperture radar
(SAR) is an active remote sensing technology that can
collect ground information at any time and under any
conditions. The explicit solution of the traditional methods
has the disadvantages of unstable results and requiring
many iterations. To solve the problem, a new method, lag
ratio and saliency map combined detection, is proposed in
this work  and applied to change detections of synthetic
aperture radar (SAR) images. The saliency-guided GGMM
is capable of capturing the primary pixel-based change
information and handling highly imbalanced datasets. The
whole process chain is automatic with an efficient
computation. The proposed approach was validated
MATLAB environment.

I. INTRODUCTION

The ability of synthetic aperture radar to detect
flooding beneath a plant canopy has been demonstrated
for a wide variety of herbaceous and woody vegetation
types. The potential exists to conduct accurate regional
surveys of seasonal flooding events, independent of
cloud cover, for input to hydrological and
biogeochemical models. On a smaller scale, accurate
wetlands delineation would be of great value to
managers of forest, wildlife, and fisheries resources. In
order to realize the potential for operational mapping of
inundation, robust classification methods are needed
which do not require repeated optimization by scene or
date. The accuracy of traditional parametric classifiers
(e.g., maximum likelihood) is likely to be compromised
by sceneto-scene variability in absolute sensor
calibration, dielectric constant of soil and vegetation,
phenological state of vegetation, and vegetation
community structure. Knowledge-based expert systems
offer an alternative approach using classification rules
derived from a spectral knowledge base. We illustrate
here how tree-based models can be used to construct
classification rules from a microwave spectral database
and to select optimal sets of sensor parameters for
mapping of inundation in the floodplain and estuary of
the Altamaha River, Georgia.

The rest of the paper is organized as follows.
Section II gives a brief overview of work related method.
Section III and IV describes the preliminaries and the

proposed methodology. Section V presents the
experimental results obtained from the proposed method
and comparison with existing work. The paper is
Conclusion insection VI respectively.

II. RELATED WORKS

Biswajeet Pradhan et al [1] proposed anefficient
methodology to recognize and mapflooded areas by
using TerraSAR-X imagery.Biswajeet Pradhan et al [2]
is proposed to identify flooded areas using multitemporal
RADARSAT-2 imageries.Lisa Landuyt et al [3] is
presented an in-depth assessment and comparison of the
established pixel-based flood mapping approaches,
including global and enhanced thresholding, active
contour modeling and change detection. The methods
were tested on medium-resolution SAR images of
different flood events and lakes across the U.K. and
Ireland and were evaluated on both accuracy and
robustness. Corneliu Octavian Dumitru et al [4] present
data analytics for a quantitative analysis in a rapid
mapping scenario applied for damage assessment of the
2013 floods in Germany and the 2011 tsunami in Japan.
Giorgio Boni et al [5] is presented the prototype system
and describes in detail the near real-time flood mapping
algorithm implemented in the system. The algorithm was
previously developed to classify CSK images, and is
modified here in order to be applied to S-1 data
too.Marian Mierla et al [6] is used to generate the
hydrological risk map of floods within the fluvial delta,
cartographic materials created by predecessors and
LiDAR techniques were used.

III. PRELIMINARIES

Lisa Landuyt et al [7] presented an in-depth
assessment and comparison of the established pixelbased
flood mapping approaches, including global and
enhanced thresholding, active contour modeling and
change detection. The methods were tested on medium-
resolution SAR images of different flood events and
lakes across the U.K. and Ireland and were evaluated on
both accuracy and robustness. Results indicate that the
most suited method depends on the area of interest and
its characteristics as well as the intended use of the
observation product. Due to its high robustness and good
performance, tiled thresholding is suited for automated,
nearreal time flood detection and monitoring. Active
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contour models can provide higher accuracies but
require long computation times that strongly increase
with increasing image sizes, making them more
appropriate for accurate flood mapping in smaller areas
of interest.

A number of established flood mapping
approaches has been selected for assessment and
comparison. An overview of the selected methods is
provided. In this section, each of these methods is
described in more detail.

A. Global Thresholding
Thresholding is an efficient and probably the

simplest approach for image binarization. Assuming the
presence of two pixel classes with substantially different
pixel distributions, a threshold value is determined to
classify the image. An overview of existing algorithms is
provided by Sezgin and Sankur. In this paper, four
widely applied algorithms are selected.

The Otsu algorithm determines an optimum
threshold based on the maximization of the between-
class variance of the foreground (flooded) and
background (nonflooded) pixels in the image. This
between-class variance can be calculated as follows:

(1)

where, μf and μb are the mean intensity of the
foreground and background pixels, respectively. ω f and
ωb denote the respective class fractions. Although
widely applied, this algorithm relies on some important
assumptions. The class density functions are assumed
Gaussian and both the class sizes and variances should
be similar. When these assumptions are violated, the
optimal threshold tends to split the class of the larger
size or variance. Moreover, a skewed density function or
the presence of outliers will cause a bias in the calculated
class means [28]. The Otsu algorithm has been used for
SAR-based flood mapping in several studies.

Kittler and Illingworth (KI) addressed the
threshold optimization problem as a minimum-error
Gaussian density fitting problem. The optimum
threshold is determined based on the minimization of a
cost function J that reflects the amount of overlap
between the Gaussian density functions of the
foreground and background classes.

The Minimum Cross Entropy algorithm solves
the threshold optimization problem by minimizing the
cross entropy between the original and the classified
images, without any a priori assumptions regarding the
class distributions.

The algorithm developed by Yen et al. also
makes use of the entropy. Whereas Li and Lee aim at
minimizing the cross-entropy between the input gray-
level image and the segmented image, this algorithm
aims at maximizing the correlation contributed by the
foreground and background classes.

IV PROPOSED SYSTEM

In this paper, a two-step automatic
change detection chain for rapid flood mapping based on
Sentinel-1 Synthetic Aperture Radar (SAR) data is
presented. First, a reference image is selected from a set
of potential image candidates via a Jensen-Shannon (JS)
divergence-based index. Second, saliency detection is
applied on log-ratio data to derive the prior probabilities
of changed and unchanged classes for initializing the
following expectation maximization (EM) based
generalized Gaussian mixture model (GGMM). The
saliency-guided GGMM is capable of capturing the
primary pixel-based change information and handling
highly imbalanced datasets. A fully connected
conditional random field (FCRF) model, which takes
long-range pairwise potential connections into account,
is integrated to remove the ambiguities of the saliency-
guided GGMM and to achieve the final change map. The
whole process chain is automatic with an efficient
computation.

Fig. 4.1 proposed block diagram
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4.1 Reference image index

The reference image selection process consists
of two steps. Firstly, some potential image candidates are
collected from the Copernicus Open Access Hub, which
should fulfill the following criteria: the data should be
acquired from the same relative orbit and with the same
polarization configuration as the flood image. Especially
in regions with pronounced seasonal flooding, only
images acquired in the same period of the year as the
target image should be collected (Hostache et al., 2012).
Secondly, the final reference image is selected from the
collected images based on the reference index (describe
later in this section). The optimal candidate should be
acquired during a period without flood (noted as “non-
flooded”) and should represent the “normal behavior” of
the scene. It is worth to mention that too many collected
potential candidates could be time-consuming with the
corresponding preprocessing and increase the storage
burden as well, a too small volume of candidates will
degrade the optimization of the final reference image.
Considering the high temporal resolution (12 days for a
single satellite and 6 days for the constellation of two
satellites) of Sentinel-1 data and the systematic global
acquisition plan of the satellite mission, it can be
assumed that images acquired during the latest year prior
to the flood could be a proper potential candidate set.

KL divergence (Kullback and Leibler, 1951) is
one of the most widely used similarity measures for
image comparison in many application fields, such as
image retrieval (Choy and Tong, 2010), image
quantitative evaluation (Pheng et al., 2016), change
detection (Cui et al., 2016). Suppose pX(x) and pY(x) are
the densities of random variables X and Y, respectively,
the KL divergence from X to Y is given by

(2)

K (X Y )has a value ≥ 0 and it is small when two
pdfs are close to each other. When KL divergence is
performed on local similarity measures like in a sliding
window, which is generally used in change detection,
one parametric SAR image model could be used to make
the KL divergence analytically tractable with a closed-
form expression (Cui et al., 2016). It is not valid to use a
single statistic model for global similarity measure
between two SAR images over large areas as they are
heterogeneous with different land cover types. Here, the
empirical distribution function is used to substitute the
pdf in computing KL divergence.

Saliency-guided generalized Gaussian mixture model

The log-ratio operator between the flood image
and the reference image as shown in Eq. (3) is used in
this paper as Bujor et al. (2004) pointed out that the ratio
operator is proper to detect sharp changes like those
associated with flood areas.

(3)

Xrefis the reference image selected by the reference
index. The log-ratio image Xlris scaled to 256 possible
gray-level values in the range [0, 255] for the subsequent
analysis. We can take the pdf p(x) of the log-ratio image
Xlras a mixture of two probability density functions
associated with the changed (flooded) and unchanged
(non-flooded) components.

Fully-connected conditional random field

CRF is a popular discriminative model for
modeling spatial information of images in computer
vision tasks (Quattoni et al., 2007; Rabinovich et al.,
2007; Torralba et al., 2004). In contrast to the traditional
local-range CRF models, which consider contextual
information in the neighborhood, the recently proposed
fully-connected CRF (Philipp and Koltun, 2011)
establishes pairwise potentials on all pair of pixels in the
image, refining pixel-based classification significantly.

IV. SIMULATION RESULTS

In this section, the simulation results are
implemented using MATLAB2014 which is figured in
5.1,5.2,5.3 and the  performance graphs are figured in
5.5 and fig 5.6

Image 1

STEP 1: Preprocessing

Fig 5.1 SAR Image Before Flood
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STEP 2: To read the image

Fig 5.2 SAR Image After Flood

STEP 3: Log-Ratio Image

Fig 5.3 Log Ratio Image

Output image

Fig 5.4 Final Image

Image 2

STEP 1: Preprocessing

Fig 5.5 SAR Image Before Flood

STEP 2: To read the image

Fig 5.6 SAR Image After Flood

STEP 3: Log-Ratio Image

Fig 5.7 Log Ratio Image
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Output image

Fig 5.8 Final Image

GRAPH 1: FALSE NEGATIVE

5.9 Graph on False Negative

GRAPH 2: FALSE POSITIVE

Figure 5.10 Graph on False Positive

GRAPH 3:    OE

Fig 5.11 Graph on OE

GRAPH 4: PCC

Fig 5.12 Graph on PCC

OUTPUT

Parameter Existing Proposed

PCC 0.91 0.9932

FP 0.96 0.89

OE 25% 13%

5.3 Performance analysis



Journal – ICON (Integrating Concepts) ISSN 2456-6071 Vol. 4, Issue 6, November 2019 6

© Journal - ICON All Rights Reserved Regular Paper

PERFORMANCE ANALYSIS

7.4 Graph of performance analysis

V. CONCLUSION

This work, an automatic change detection
processing chain for rapid flood mapping is presented.
Change detection based algorithms play a critical role in
flood monitoring using remote sensing data, while the
selection of a reference image is crucial in order to get
an accurate thematic map. The Saliency-mapping is
proposed to extract primary change detection
information based on the log-ratio image that is
generated from the reference and target image.In contrast
to the traditional local-connected MRF and CRF, the
FCRF considers a global view in both label and
observation domains, thus enabling it to eliminate noise
and to preserve detailed information at the same time.

FUTURE WORK
Future adopt a modified page rank algorithm to refine
the saliency map.
It not only improves saliency detection through large
salient region detection and noise tolerance in messy
background,but also generates saliency maps with a
well-defined object shape.
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